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Abstract. We report a theoretical approach based on a combination of jj-coupled eigenchannel R-matrix
and multichannel quantum-defect (MQDT) methods suitable to determine Raman couplings, dynamical
Stark shifts and threshold-resolved ionization rates in heavy alkaline-earth atoms. These atomic parame-
ters are needed to analyze the partial photoelectron spectra and the ionization dynamics of multiphoton
processes in a perturbative treatment of the field-atom interaction to the lowest non-vanishing order of per-
turbation theory. Numerical results are presented in barium, pertaining to the experimental level scheme
used by Wang, Chen and Elliott [Phys. Rev. Lett. 77, 2416 (1996)] to study coherent control through two-
color interfering paths. Particular emphasis is given on the comparison of length and velocity formulations
for the electric dipole operator.

PACS. 31.15.Ar Ab initio calculations – 32.80.Fb Photoionization of atoms and ions – 32.80.Qk Coherent
control of atomic interactions with photons

1 Introduction

Due to the development of intense laser sources, multipho-
ton ionization (MPI) of multielectron atoms has recently
received particular attention from experimentalists and
theorists. Multiphoton ionization which occurs via close-
lying near-resonant discrete levels has emphasized the im-
portance of Raman processes and dynamical Stark shifts
(also called light shifts), both proportional to the inten-
sity of the laser light [1–6]. Two-photon Raman couplings
play also a key role in phenomena such as laser-induced
continuum structure (LICS) [7,8] or population transfer
through the continuum using processes similar to the stim-
ulated Raman adiabatic passage (STIRAP) [9,10].

The selected theoretical models quoted above con-
cern only alkali atoms. In alkaline-earth atoms, experi-
mental and theoretical studies are scarcer, but the pres-
ence of doubly-excited states in the bound or autoionizing
energy-range can lead to particularly large Raman cou-
plings. Earlier and recent experiments have demonstrated
the importance of Raman couplings in barium using
three-photon ionization via quasi-degenerate two-photon
resonances [11] or using intense picosecond laser pulses
[12,13]. The control of photoionization yields into different
ionic channels has been investigated in barium by means of
two coherent interfering photoionization routes, both be-
ing two-photon, two-color pathways resonantly enhanced
by an intermediate state [14,15]. In this scheme the two
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intermediate states are coupled through a Raman process.
To interpret the unusual lineshapes observed in that ex-
periment, Nakajima et al. [16] have studied the dynamics
of a similar system in calcium.

The examples presented above demonstrate the impor-
tance of Raman couplings and dynamical Stark shifts and
the need for their determination in real atoms. Quanti-
tative studies of MPI processes in multielectron atomic
systems are less numerous than in one-active electron sys-
tems. Calculations of multiphoton transitions in two-elec-
tron atoms have been reviewed recently by Lambropoulos
et al. [17]. Most of the approaches use L2-integrable dis-
cretized basis sets, such as Slater type orbitals or B-
splines, and propose different methods to handle multi-
channel continuum problems [18–20]. These methods are
suitable to study MPI spectra, including energy- or angle-
resolved photoelectron spectra, in a perturbative treat-
ment for low or moderate intensity. Some approaches
introduce a quantized description of the modes of the
electromagnetic field and a formalism based on the resol-
vent operator. Alternative ones use a classical description
of the electromagnetic field coupled to the Bloch equations
for the density-matrix or to a perturbative treatment of
the time-dependent Schrödinger equation (TDSE). Both
approaches can be extended to study near resonant situ-
ations by separating in the rotating wave approximation
(RWA) [21] the quasi-resonant states from the remaining
states of the atom. The latter are eliminated and treated
in an effective way through the introduction of atomic
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parameters such as dynamical Stark shifts, ionization
widths and Raman-like couplings. Subsequently, these pa-
rameters are used to interpret the dynamics of the pro-
cesses.

For high field strengths, it is no longer possible to
separate atomic calculations from the study of the dyna-
mics. Direct non-perturbative solution of the TDSE equa-
tion is necessary using either a large atomic basis set or
a L2-discretized basis technique [17]. Another theoreti-
cal approach which has been proved to be efficient in
the description of MPI processes in multielectron atomic
systems is the R-matrix Floquet method introduced by
Burke, Francken and Joachain [22]. It expresses the time-
dependent wavefunction of the atom as a Fourier series of
the harmonics of the frequency of the field, and therefore
disregards the pulse shape [22,23].

The applications of both B-spline and R-matrix
Floquet methods were restricted to light atomic sys-
tems, where the spin-orbit interaction can be disregarded.
Theoretical approaches adapted to describe MPI pro-
cesses in heavy two-electron atom where relativistic ef-
fects cannot be neglected are very scarce, even when low-
est order perturbation theory is used to account for the
field-atom interaction. Several studies have demonstrated
that the jj-coupled eigenchannel R-matrix method in
combination with the multichannel quantum defect the-
ory (MQDT) [24] can be successfully applied to study
single-photon absorption in heavy alkaline-earth atoms.
In this approach, electronic correlations as well as spin-
orbit interaction are accounted explicitly within the re-
action volume. This method has been recently enlarged
to the calculation of total and partial two-photon ioniza-
tion cross-sections [25,26]. The purpose of the present pa-
per is to further extend the eigenchannel jj-coupled R-
matrix/MQDT method to the calculation of two-photon
atomic parameters, such as Raman couplings and dy-
namical Stark shifts occurring at the second-order of
the perturbation theory in the treatment of the field-
atom interaction. Moreover, being coupled to the MQDT
method, the eigenchannel R-matrix method is very well-
adapted to the determination of threshold-resolved quan-
tities such as the threshold-resolved ionization rates.
The numerical results presented in this work, corre-
spond to atomic parameters required in the analysis
of coherent control through interfering paths in barium
[14,15]. A more complete analysis dealing with the spec-
troscopic properties involved in this system and the dy-
namics of this process will be presented in a forthcoming
paper [27].

The main points of the method, initially devoted to the
interpretation of one-photon photoionization spectra, are
recalled in Section 2 and applied to the determination of
threshold-resolved atomic quantities. In Section 3, the cal-
culation of Raman couplings and light shifts is presented
in detail. Section 4 is focused on a discussion about results
obtained using the length or velocity gauge for the electric
dipole operator. Indeed, the method based on a frozen-
core model excludes completely core-excited intermediate
states from the calculation of dynamical Stark shifts and

Raman couplings. As a result, the usual equivalence bet-
ween length and velocity gauges is no longer valid. To our
knowledge, comparison of length and velocity formulations
in frozen-core models has never been presented. Further-
more, in the so-called Λ or V systems, the discrete states
resonantly coupled by the radiation field are explicitly in-
troduced in the Bloch equations governing the time evo-
lution of the system and excluded from the infinite sum-
mations involved in atomic parameters introduced at the
second-order of atom-field interaction. This complicates
and makes more subtle the comparison between length
and velocity results.

2 Eigenchannel R-matrix method
combined with MQDT: determination
of threshold-resolved ionization rates

The present work is devoted to the calculation of the
atomic parameters involved in the dynamical analysis [16]
of the coherent control of ionization process experimen-
tally studied in barium [14,15]. The 6s2 1S0 ground state
and the 6s6p and 6s7p 1P1 intermediate states, with en-
ergies 0, ~$1 and ~$2 respectively, are denoted in the
following as the |0〉, |1〉 and |2〉 states. The state |1〉
(resp. |2〉) is near resonantly excited from the |0〉 state
by a laser with angular frequency ω1, (ω1 ∼ $1) pola-
rization ε1 and intensity I1 (resp. ω2, ε2, I2 with ω2 ∼ $2)
and then photoionized by a second laser characterized by
ω2, ε2, I2 (resp. ω1, ε1, I1). The two two-photon ioniza-
tion pathways starting from the state |0〉 reach the same
final continuum states, therefore this ionization process is
“coherent” and there is an interference between the two
ionization processes via |1〉 or |2〉. Studying in the RWA
approximation the dynamics of this system on the sub-
space spanned by the three bound states introduces as
atomic parameters the one-photon Rabi couplings Ωi bet-
ween the ground state and the two intermediate states,
the one-photon ionization rates γcoh

i from the intermedi-
ate states, the dynamical Stark shifts Ωii of these states
and the Raman coupling Ω21 between the two intermedi-
ate states.

Let us remark, that the method presently developed
can also be applied to determine the coherent ionization
rates γcoh

i , the dynamical Stark shifts Ωii and the Raman
coupling Ω21 for the 6s6p and 6s7p 1P1 states of barium,
for non-resonant laser lights ω1 6= $1 and ω2 6= $2, but
satisfying $1 + ω2 = $2 + ω1 = Ef . In this later case the
|0〉, |1〉 and |2〉 states are not linked in a so-called V cou-
pling scheme and the corresponding energy-dependence of
the atomic parameters can be studied.

2.1 Eigenchannel R-matrix + MQDT method

The calculations performed in barium use a model Hamil-
tonian to describe the wavefunctions of the two valence
electrons outside a frozen Ba2+ core. The interaction
of each valence electron with the core is described by
a `-dependent potential including screening, polarization
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and spin-orbit terms [24,28]. Electron correlations are
treated within a finite spherical volume V of radius ro
using discrete sets of two-electron basis functions. These
functions are antisymmetrized products of one-electron
orbitals of definite total angular momentum J and par-
ity π, the core orbitals 1s to 5p being disregarded. Con-
sequently core excitation effects are not explicitly intro-
duced, although some contributions are implicitly taken
into account through the polarization term present in the
Hamiltonian. Standard diagonalization of the two-electron
Hamiltonian in a finite basis provides the wavefunctions
for low-lying levels, while the eigenchannel jj-coupled R-
matrix approach is used to study highly excited states.

The 6s2 1S0 and 6s6p and 6s7p 1P1 states are assumed
to be confined within the volume V . The size of V should
be large enough to include the 6s7p state. In the length
formulation, convergent computation of the dipole matrix
elements for excitation from the 6s7p state requires a large
reaction volume r0 = 50 a.u., while in the velocity formu-
lation a smaller radius, i.e. 40 a.u., is sufficient. In the
following we adopt the value r0 = 50 a.u., which allows
comparison between calculations using both formulations
for the electric dipole operator. The wavefunctions of the
bound states are determined as the eigenvectors of the
two-electron Hamiltonian matrices Hπ J

cc built on large ba-
sis sets of functions, denoted as “closed-type” functions,
which have vanishing amplitudes on the surface of the
finite volume. The maximum `-value for the angular mo-
mentum of the monoelectronic wavefunctions used in the
basis set is equal to 6, and for a given `-value up to 20 dif-
ferent “closed-type” orbitals are included to ensure con-
vergence. For J = 0e 1098 functions are used and 2733
for J = 1o. The “closed-type” functions account for var-
ious electron correlation, relaxation and polarization ef-
fects which take place within the volume V . It must be
emphasized that, in the frozen-core approach, these func-
tions do not form a complete set, because they span only
the subspace orthogonal to the Ba2+ core orbitals.

The final even-parity states reached by absorption of
the two photons ω1 and ω2 from the ground state lie above
the Ba+ 5d5/2 threshold in the energy-range close to ~$1

+ ~$2 ≈ 50 607 cm−1. The description of the J = 0e, 1e

and 2e autoionizing levels is obtained by using the eigen-
channel jj-coupled R-matrix approach combined to the
MQDT [24,28]. In the eigenchannel R-matrix approach,
the wavefunctions of the valence electrons outside the fro-
zen Ba2+ core are determined variationally within a finite
reaction volume V . The volume of radius r0 = 50 a.u.,
used to describe the 6s2 1S0, the 6s6p and 6s7p 1P1 bound
levels has to be also employed to perform R-matrix calcu-
lations of the final autoionizing states. In order to treat the
escape of a single electron from the reaction volume intoN
open or closed MQDT fragmentation channels, the vari-
ational basis set includes two-electron “open-type” func-
tions having non-vanishing amplitude on the surface of
the reaction volume, in addition to a large set of “closed-
type” functions allowing short-range correlation effects to
be accounted for. In the present calculation, three “open-
type” two-electron basis functions are included to describe

ionization in a given channel. Convergence in the descrip-
tion of correlation effects in the final even-parity states is
obtained for a relatively small reaction volume r0 ∼ 25
to 30 a.u. To ensure convergence of the variational cal-
culations for r0 = 50 a.u. large basis sets are used, with
1107 functions for J = 0e, 2769 for J = 1e and up to
4150 functions for the J = 2e symmetries. The parameters
finally chosen to generate the two-electron basis set are op-
timum. Further increase in the reaction volume size, the
maximum angular momentum or the number of “closed-
type” orbitals would not improve the convergence. The
variational calculation gives the logarithmic derivatives
at the surface of the reaction volume of N independent
solutions of the Schrödinger equation. The eigenchannel
MQDT formulation [29,30] is used to extend the wave-
functions obtained in the R-matrix treatment outside the
reaction volume, by imposing appropriate boundary con-
ditions at large r.

The even-parity channels converging to the Ba+ 6s,
5d3/2 and 5d5/2 thresholds are treated as open channels in
the MQDT treatment. This treatment involves three even-
parity jj-coupled channels for J = 0e, eight for J = 1e

and 11 for J = 2e. Although the 6p7p levels [31] lie in the
same energy range, no closed channel converging to the 6p
thresholds was introduced in the MQDT treatment. In-
deed, for r0 = 50 a.u., the low-lying 6p7p levels fit entirely
within the R-matrix box. An efficient way for handling
these levels is to use the method developed by Lecomte
et al. [32], which amounts assuming that the 6p7p levels
are bound levels included within V and treating directly
their interaction with the open continua.

In the autoionizing range, the number of physical so-
lutions is equal to N0, the number of open channels. In
the present study, where no closed channel is introduced,
for each final states Je-value one has N0 = N . To cal-
culate the branching ratios corresponding to the photo-
ionization process in each channel i ≡ {Nc`cjc, ε

′`′j′ J},
we use the “incoming wave” normalization condition to
determine N0 linearly independent physical solutions de-
noted |ψ−i (E, J)〉 = |Nc`cjc, ε

′`′j′J〉 [33].

2.2 Threshold-resolved coherent decay rates
and interference terms in the ionization process

This section deals only with the threshold-resolved cohe-
rent ionization rates of states |1〉 and |2〉 and with
the interference terms occurring in the ionization pro-
cess whose determination requires the calculation of one-
photon dipole matrix elements. The calculation of light
shifts and two-photon Raman couplings will be addressed
in the next section.

The threshold-resolved coherent decay rates of states
|1〉 and |2〉 associated with J = 0e, 1e or 2e final states are
calculated at the resonant energy Er = ~$1 + ~$2. The
one-photon dipole reduced matrix element connecting the
6snp 1P1 (n = 6 or 7) states to the final channel i with
J = 0e, 1e or 2e is defined by:

D−i (n,E, J) = 〈ψ−i (E, J)||D||ψ(6snp 1P1)〉, (1)
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where the wavefunctions of 6snp 1P1 (n = 6 or n = 7)
states are eigenvectors of Hπ J

cc for J = 1o. In equation (1),
D is the electric dipole operator, either in the length Dr =
r or in the velocity D∇ = ±∇/~ω form, (the upper sign
corresponds to an emission process and the lower one to
an absorption process) and ω is the frequency of the laser
light. From equation (1) the following threshold-resolved
resonant quantities at energy Er are calculated:

D(Nc`cjc, n, n
′, J) =

∑
i′

πD−i′ (n,Er, J)D−∗i′ (n′, Er, J),

(2)

where ∗ denotes the complex conjugate and the sum runs
over all channels i′ ≡ {Nc`cjc, ε

′`′j′} associated with the
Ba+ (Nc`cjc) ionization threshold. By introducing the po-
larizations of the laser lights and by summing over the J
values of the final states, (J = 0e, 2e for linear parallel
polarizations and J = 1e, 2e for perpendicular linear po-
larizations), we determine the threshold-resolved coherent
ionization rates and the threshold-resolved interference
terms between the two ionization paths via states |1〉 or
|2〉. These quantities are linear combinations of D with co-
efficients aJ Ik and bJ

√
I1 I2, where aJ and bJ are angular

coefficients depending on the polarizations of the lasers.
The coherent threshold-resolved ionization rate for the

state j ionized by the laser light k is:

1
2
γcoh
j (Nc`cjc) =

∑
J

1
2
γcoh
j (Nc`cjc;J)

=
∑
J

aJIkD(Nc`cjc, n, n, J), (3)

with n = n′ = 6 or 7 (j = 1 or 2) and k 6= j. Note that
the summation of γcoh

j (Nc`cjc) over the Nc`cjc thresholds
gives the total coherent rate γcoh

j .
The threshold-resolved interference term between ioni-

zation paths via intermediate states |1〉 and |2〉 is:

γcoh
21 (Nc`cjc) =

∑
J

γcoh
21 (Nc`cjc;J)

=
∑
J

bJ
√
I1I2D(Nc`cjc, n, n

′, J), (4)

with n = 6 and n′ = 7. The γcoh
21 (Nc`cjc) coeffi-

cients are complex numbers satisfying γcoh
21 (Nc`cjc) =

γcoh ∗
12 (Nc`cjc). As a result to the normalization condi-

tion, summation of their imaginary parts over the Nc`cjc
thresholds is equal to zero.

Let us remark that the threshold-resolved interference
terms have been called “two-photon Rabi frequencies from
|1〉 and |2〉 through the continuum associated with the
ionization threshold Nc`cjc” in an earlier work [16].

The values obtained for the coherent threshold-
resolved ionization rates for the 6s6p and 6s7p states of
barium and the threshold-resolved interference terms are
given in Table 1. Length and velocity results are presented
and the linear polarizations of the lasers are either parallel
or perpendicular as in the experiment [14,15]. The values

for the Rabi frequencies, Ωi (i = 1 or 2), for the reso-
nant transitions coupling the state |0〉 to the intermediate
states |1〉 and |2〉 are also given. These one-photon pa-
rameters are proportional to

√
Ii. This table contains also

two-photon atomic parameters, which will be discussed
below.

For all the resonant one-photon atomic parameters,
the values calculated using either the length or the velo-
city formulation of the dipole transition operator agree to
within less than 10%. It can be verified from Table 1 that
the sum over the three ionization thresholds of the imag-
inary parts of the threshold-resolved interference terms
strictly vanishes.

3 Two-photon Raman couplings and light
shifts

Light shifts and two-photon Raman couplings appear to
the second order of perturbation theory. They correspond
to scattering-like processes, during which one photon is
emitted and another one is absorbed. The process where
absorption occurs before emission is called in the present
paper the “rotating” one, as in [5], the “counter-rotating”
process corresponding to stimulated emission followed by
absorption. Both processes could be significant [8] and
involve summations over bound and continuum states.
When the energy reached after absorption of the photon
is greater than the first ionization limit, the denominator
y involved in the summation vanishes in the integration
range. Thus, the “rotating” contribution separates into
an imaginary part corresponding to the “resonant” con-
tinuum intermediate states with energy Er = ~$1 + ~$2

and a real part associated with the contribution of “non-
resonant” intermediate states with energy E 6= Er. These
terms result from the well-known formula:

limη→0+

1
y + iη

= P 1
y
− iπδ(y), (5)

where P denotes the Cauchy principal part and where
the contributions of the imaginary term are expressed in
terms of one-photon dipole matrix elements calculated at
the resonant energy where y vanishes.

3.1 Two-photon Raman couplings

The two-photon Raman coupling Ω21 between the 6s6p
1P1 and 6s7p 1P1 states, results from two processes:

(i) absorption by the state |1〉 of the photon ω2 with po-
larization ε2 leading to the virtual states |EX J〉, fol-
lowed by stimulated emission of the photon ω1 with
polarization ε1, towards state |2〉. The contribution
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Table 1. Atomic parameters for the three-state model pertaining to the experimental scheme used to study coherent control
of the photoionization products in barium [14,15]. The Rabi couplings, Raman coupling and the dynamical Stark shifts are
expressed in rad s−1, and the ionization rates and the interference terms in s−1. The two lasers have parallel or perpendicular
linear polarizations and the intensities Ii are expressed in W cm−2. These parameters are calculated using the length r or
the velocity ∇ formulation for the electric dipole operator. Ωi: one-photon Rabi frequency between the ground state and the
two excited states |i〉 i = 1, 2; Ω21: two-photon Raman coupling between states |1〉 and |2〉; γcoh

21 (Nc`cjc): threshold-resolved
interference term in the ionization from the ground state via the excited state |1〉 and |2〉; Ωii: dynamical Stark shift and
ionization width for the state |i〉 in the presence of the laser light k; γcoh

i (Nc`cjc): threshold-resolved coherent ionization rate
for the state |i〉 in the presence of the laser light k.

polarization ‖ ‖ ⊥ ⊥
formulation r ∇ r ∇
Ω1/
√
I1 3.627 × 108 3.716 × 108 3.627 × 108 3.716 × 108

Ω2/
√
I2 −9.490× 107 −9.868× 107 9.490 × 107 9.868 × 107

Ω21/
√
I1 I2 −31.52 − i 1.13 −16.95 − i 1.32 86.43 − i 11.68 77.22 − i 13.04

γcoh
21 (6s1/2)/

√
I1 I2 −0.07− i 2.72 0.16 − i 2.52 6.99 + i 1.29 7.74 + i 1.18

γcoh
21 (5d3/2)/

√
I1 I2 0.50 + i 1.10 0.52 + i 1.03 5.25− i 0.71 5.83− i 0.70

γcoh
21 (5d5/2)/

√
I1 I2 0.70 + i 1.62 0.64 + i 1.49 −0.56− i 0.58 −0.53− i 0.48

Ω11/I2 34.73 − i 19.16 34.31 − i 17.62 56.79 − i 16.85 53.08 − i 16.73

(1/2)γcoh
1 (6s1/2)/I2 16.92 15.54 11.85 11.38

(1/2)γcoh
1 (5d3/2)/I2 1.05 0.92 3.23 3.54

(1/2)γcoh
1 (5d5/2)/I2 1.19 1.16 1.72 1.81

Ω11/I1 −128.45 −209.46 −128.45 −209.46

Ω22/I1 −37.76− i 10.13 −56.73 − i 10.43 277.69 − i 58.09 277.55 − i 61.55

(1/2)γcoh
2 (6s1/2)/I1 3.62 3.71 39.53 41.85

(1/2)γcoh
2 (5d3/2)/I1 1.86 1.93 15.99 17.19

(1/2)γcoh
2 (5d5/2)/I1 4.65 4.79 2.57 2.51

Ω22/I2 31.29 − i 8.37 23.17 − i 9.00 31.29 − i 8.37 23.17 − i 9.00

of this “rotating” process is given by:

Ω21√
I1I2

=
∑
J

Ω21(J)√
I1I2

=

∑
J

[
limη→0+

∫
dEX

〈2|D1 ·ε1|EXJ〉〈EXJ |D2 ·ε2|1〉
~$1 + ~ω2 −EX + iη

]
.

(6)

The summation over J in equation (6) includes
J = 0e, 2e states for parallel linear polarizations and
J = 1e, 2e for perpendicular linear polarizations. In
equation (6), the integration is meant to include a dis-
crete summation over bound states plus an integration
over continuum states. Since the energy ~$1 + ~ω2 is
above the first ionization threshold, Ω21(J) is a com-
plex number. The real part corresponds to the Cauchy
principal part integral obtained for η = 0, which
accounts for the contribution of nonresonant states
EX 6= Er. The imaginary part, due to the resonant
continuum states, is −π〈2|D1 · ε1|ErJ〉〈ErJ |D2 · ε2|1〉,
where Er = ~ω1 + ~$2 ∼ ~$1 + ~ω2;

(ii) stimulated emission by the state |1〉 of the photon
ω1 with polarization ε1 leading to the virtual states
|EX′ J ′〉, followed by absorption towards state |2〉

of the photon ω2 with polarization ε2. The two-
photon amplitude of this “counter-rotating” process,
is given by:

om21√
I1I2

=∑
J′

∫
dEX′

〈2|D2 · ε2|EX′J ′〉〈EX′J ′|D1 · ε1|1〉
~$1 − ~ω1 −EX′

· (7)

Because the energy ~$1 − ~ω1 involved in equation (7) is
close to the ground state energy, om21 is a real quantity.

The total two-photon Raman coupling, proportional
to
√
I1I2, is equal to:

Ω21 = Ω21 + om21. (8)

3.1.1 Calculation of “rotating” contribution

The “rotating” contribution is proportional to the ma-
trix element: 〈2|D1 · ε1G(~$1 + ~ω2) D2 · ε2|1〉, where
G(E) = limη→0+(E−H+iη)−1 is the Green operator. As
in the R-matrix/MQDT calculation of two-photon tran-
sition amplitudes [25,26], explicit summation is avoided
by using the approach of Dalgarno and Lewis [34].
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For each J-value one determines a wavefunction Λp1(J),
describing the perturbation of state |1〉 by the laser light
ω2, as the physical solution of the inhomogeneous equa-
tion:

(~$1 + ~ω2 −H)|Λp1(J)〉 = (D2 · ε2)|1〉, (9)

satisfying outgoing-wave boundary conditions in the open
channels and decreasing exponentially in the closed chan-
nels. Then:

Ω21(J) = 〈2|D1 · ε1|Λp1(J)〉
√
I1I2. (10)

In both equations (9, 10) we use the same gauge corre-
sponding either to the length or to the velocity form, which
defines two perturbed wavefunctions Λr

p1
(J) and Λ∇p1

(J),
solutions of a different second-order differential equation,
and two “rotating” contributions Ω

r

21(J) and Ω
∇
21(J). The

gauge-dependence of these functions and of the Raman-
coupling coefficients will be discussed in Section 4.

Using the R-matrix/MQDT approach, Λ(J) is expan-
ded within the reaction volume on the two-electron basis
set from which the core orbitals 1s to 5p are excluded.
Outside V , Λ(J) is matched to an analytic expansion in
terms of channels functions, used to impose the correct
boundary conditions for large r [25].

It is also possible to determine the wavefunction
Λp2(J) describing the state |2〉 perturbed by the ω1 laser
light and the transition amplitude Ω12(J) towards state
|1〉 under the ω2 laser light. From equation (6) it is obvious
that, when the same formulation for the dipole operator is
used, one has Ω12(J) = Ω21(J). In the present work, this
equality is numerically satisfied with at least 8 significant
digits.

For a given J-value, the imaginary part is related to the
contribution of resonant continuum states with the con-
sidered J and it can be expressed in terms of one-photon
matrix elements. Therefore, it does not depend on the
gauge and is numerically equal to within 1%, to the sum
over all threshold-resolved interference terms (Eq. (4)).
One has:

=[Ω21(J)] = −
∑
Nc`cjc

γcoh
21 (Nc`cjc;J), (11)

where both quantities are calculated with the same gauge
and where the summation in the right hand side gives a
real number.

A similar relation remains valid for the imaginary part
of the Raman coupling, after summation over J and after
adding the “counter-rotating” term, which is real. This
property can be verified in Table 1, by comparing =[Ω21]
to the sum over the ionization thresholds of the real parts
<[γcoh

21 (Nc`cjc)], and by calculating the sum of the imag-
inary parts =[γcoh

21 (Nc`cjc)]. However neither these rela-
tions nor the equality Ω12 = Ω21 were satisfied in the
atomic parameters obtained for calcium [16].

3.1.2 Calculation of “counter-rotating” contribution

The om21 term, introduced in equation (7), would be ob-
tained from perturbed functions similar to the Λp1(J) ones

(Eq. (9)), but calculated at the energy ~$1−~ω1 ∼ 0. At
this energy, all channels are closed. Using a large reaction
volume with radius r0 = 50 a.u. would introduce numeri-
cal difficulties related to the exponential growth of the
Coulomb wavefunctions f and g [29,30] in the closed chan-
nels. An alternative to the Dalgarno and Lewis method is
to obtain directly the expansion of the Green operator
G(~$1 − ~ω1). Thus om21 is calculated by performing an
explicit summation over all the eigenstates of the Hamil-
tonian matrix Hπ J′

cc for J ′ = 0e and J ′ = 2e built on
basis states contained within V and representing bound
states as well as discretized continuum states with a given
J ′ value, the latter being located below as well above the
double ionization limit Ba2+.

3.2 Calculation of light shifts

The light shifts, or dynamical Stark shifts, Ωii(ωk) of
the bound states |i〉 due to the laser light ωk (k = 1
or k = 2), proportional to Ik are calculated in the same
way as Ω12 using the relation Ωii = Ωii + omii, but with
D1 · ε∗1 = D2 · ε2. However, now in the velocity formu-
lation, the contribution of the A2

k term proportional to
the square of the vector potential associated with laser k
is to be added to the “rotating” and “counter-rotating”
terms. Indeed, the A2

k term which appears to the first or-
der of perturbation theory is also proportional to the laser
intensity Ik. One has:

∼
Ω
∇
ii (ωk) = Ω∇ii (ωk) +

A2
k

2ω2
k

2N , (12)

where N = 2 is the number of valence electrons treated
in the frozen-core model. For ~$i + ~ωk greater than the
first ionization limit Ωii(ωk) is a complex number whose
real part is equal to the light shift and the imaginary part
to the opposite of the total ionization rate. The imaginary
parts of Ωii(ωk) satisfies, for i 6= k, the following relation
which is numerically verified within a few %, as it can be
seen in Table 1

=[Ωii(ωk)] = −1
2

∑
Nc`cjc

γcoh
i (Nc`cjc). (13)

3.3 Energy dependence of the Raman coupling

Raman coupling can be defined in the presence of two
lasers with angular frequencies ω1 6= $1 and ω2 6= $2 but
satisfying Ef = $1+ω2 = $2+ω1. This scattering process
corresponds to resonant continuum states with energy Ef .
The energy variations of the real and imaginary parts of
the Raman coupling Ω21(Ef) calculated using the length
form for the electric dipole operator, are presented in
Figure 1, for laser lights with parallel (Fig. 1a) or perpen-
dicular (Fig. 1b) linear polarizations. Since state |0〉 is in-
troduced in the calculation of the “counter-rotating” term
for this non-resonant Raman coupling, there is a diver-
gence at the resonant energyEr. The studied energy-range
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Fig. 1. Energy variation for the Raman coupling Ω21(Ef) with
Ef = ~($1+ω2) = ~($2+ω1) between the 6s6p 1P1 state, with
energy ~$1, and the 6s7p 1P1 state, with energy ~$2, of bar-
ium in presence of laser lights with linear parallel polarizations
(Fig. 1a) or linear perpendicular polarizations (Fig. 1b) and an-
gular frequencies ω1 and ω2. Dashed line: <[Ω21] (divided by
a factor 20 in (a)), which diverges at Er = ~($1 +$2), due to
the contribution from the 6s2 state to the “counter-rotating”
interaction. Full line: =[Ω21]. The resonances correspond to the
6p7p autoionizing states with J = 2 (a) and J = 1 (b) [31].

includes the lower lying 6p7p autoionized resonances [31].
A detailed analysis of these resonances will be presented
in a forthcoming paper [27]. For perpendicular polar-
izations (Fig. 1b) the energy dependence is dominated
by the 6p7p 1P1 and 3D1 narrow resonances at respec-
tively 50 383 cm−1 and 51 113 cm−1, which appear as
Lorentzian-like (resp. dispersion-like) profiles in the imag-
inary (resp. real) part of the Raman coupling coefficient.
With parallel polarizations (Fig. 1a) the broad 6p7p 3D2

resonance, excited near 51 200 cm−1, gives rise to Fano-
like profiles in the real and in the imaginary part of Ω21.
Larger values for the Raman coupling are observed near
the resonances. To study the dynamics of the system in
this energy range, the three state model is no longer valid.
To extend this model, it is necessary to explicitly intro-
duce the autoionizing states in the effective Hamiltonian.

In Figure 1, where the states are non-resonantly cou-
pled by the laser lights, the Raman couplings and light
shifts obtained by introducing all intermediate states in
the summations do not depend significantly on the gauge
used.

4 Raman coupling and dynamical Stark shifts
in a V system

In the particular case where the |1〉 and |2〉 states are
resonantly coupled through a state |0〉 in a V (resp. Λ)
scheme, the resonant state |0〉 is to be excluded from the
“counter-rotating” (resp. “rotating”) term in the calcula-
tion of Raman couplings and dynamical Stark shifts. The
atomic parameters obtained in this way have by them-
selves no physical meaning. Introduced in a dynamical
study, they represent the coupling between states |1〉 and
|2〉 and the shifts of these states due to all non-resonant
states. Therefore the |0〉 state is excluded from the sum-
mations in the calculation of atomic parameters involved
in the interpretation of the coherent control experiment
[14,15], and given in Tables 1, 2 and 3. In this section we
discuss Raman couplings and light shifts for states |1〉 and
|2〉 resonantly coupled through a state |0〉 in a V scheme,
as in the coherent control experiment [14,15]. In this case
the |0〉 state is excluded from the “counter-rotating” con-
tribution. A special emphasis is given to the comparison
of length and velocity formulations.

4.1 Relative contributions of “rotating”
and “counter-rotating” interactions

Table 2 presents the contributions of the “rotating” (a)
and “counter-rotating” (b) terms to the two-photon Ra-
man coupling and to the dynamical Stark shifts in the
length Ωr

ij/
√
IiIj and velocity forms Ω∇ij /

√
IiIj . Compa-

ring (a) and S = (a) + (b) demonstrates that the
“counter-rotating” interaction cannot be disregarded. The
importance of this term in LICS has been emphasized
by Dai and Lambropoulos [8] who called it “stimulated
Raman coupling”. Furthermore, comparing the length and
velocity values for the “rotating” or “counter-rotating”
term proves that it is meaningless to analyze separately
each process, both contributing simultaneously to the
same scattering-like interaction. The comparison between
length and velocity values for the sum S will be discussed
below.

4.2 Raman couplings and dynamical Stark shifts

Table 1 reports the values of the Raman couplings and
light shifts pertaining to the interpretation of Wang et al.
experiment [14,15]. The values obtained with length and
velocity formulations are presented for parallel and per-
pendicular polarizations.

For the laser intensities used in the experiment [15],
I1 ∼ 8× 106 W cm−2 and I2 ∼ 1× 106 W cm−2, the one-
photon Rabi frequencies Ω1 ∼ 5 cm−1 and Ω2 ∼ 0.5 cm−1

are about 104 to 105 times larger than the ionization
widths, which are of the order of 1 × 10−4 cm−1. The
Raman couplings and the ionization rates are of the same
order of magnitude but these two atomic parameters are
smaller than the Rabi frequencies, which appear to first
order in the atom-field interaction.
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Table 2. Contributions of the “rotating” (a) and “counter-rotating” (b) terms and of their sum S = (a) + (b) to the real
parts of the two-photon Raman couplings (i 6= j) and to the dynamical Stark shifts (i = j) in the length Ωr

ij and velocity Ω∇ij
formulations, for parallel or perpendicular linear polarizations.

pol. i j <(Ωr
ij)/
p
IiIj <(Ω∇ij )/

p
IiIj

(a) (b) S (a) (b) S

‖ 2 1 −3.1 −28.4 −31.5 −23.8 6.9 −16.9

‖ 1 1 119.4 −84.7 34.7 34.1 −26.9 7.2

‖ 2 2 467.4 − 505.2 −37.8 − 130.2 −14.8 − 145.0

⊥ 2 1 76.2 10.2 86.4 79.2 −2.0 77.2

⊥ 1 1 74.3 −17.4 56.9 32.9 −6.9 26.0

⊥ 2 2 461.3 −183.6 277.5 203.1 −13.9 189.2

Table 3. Real parts of the two-photon Raman couplings (i 6= j) and dynamical Stark shifts (i = j) due to photon ωk (k 6= i)

in the velocity form
∼
Ω
∇
ij or in the length form Ωr

ij for parallel or perpendicular linear polarizations. Ω∇ij and Ωr
ij : sums of the

“rotating” and “counter-rotating” contributions; N/ω2
k: in the velocity form, contribution to first order of perturbation theory

of the interaction quadratic in the potential vector A; total = <(Ωr
ij)/
p
IiIj+(a)+(b)+(c): total value of the second member of

equation (18) which is to be compared with the first member <(Ω∇ij )/
p
IiIj ; (a) and (b): contributions to the differences between

velocity and length values due to the incompleteness of the basis set used in the R-matrix treatment; (c): contribution to the
difference between velocity and length values due to the exclusion of the ground state from the “counter-rotating” contribution.

pol. i j
<(Ω∇ij )
p
IiIj

N
ω2
k

<(
∼
Ω
∇
ij)p

IiIj

<(Ωr
ij)p

IiIj
(a) (b) (c) total

‖ 2 1 −16.9 −16.9 −31.5 0.0 −0.3 +16.0 −15.7

‖ 1 1 +7.2 +27.1 +34.3 +34.7 0.0 −28.5 0.0 +6.3

‖ 2 2 −145.0 +88.3 −56.7 −37.8 0.0 −104.0 0.0 −141.8

⊥ 2 1 +77.3 +77.3 +86.4 + 0.77 −0.41 − 16.0 +70.8

⊥ 1 1 +26.0 +27.1 +53.1 56.9 0.0 −33.0 0.0 +23.9

⊥ 2 2 + 189.2 + 88.3 + 277.5 277.7 0.0 − 104.2 0.0 173.5

4.3 Comparison between length
and velocity formulations

In this section we compare length and velocity formula-
tions for calculation of Raman couplings and light shifts
for the states |1〉 and |2〉 resonantly coupled through the
state |0〉 in a V scheme, as in the coherent control exper-
iment [14,15]. In this case the |0〉 state is excluded from
the “counter-rotating” contribution.

Equivalence of the two forms, length and velocity,
for the calculation of a non-resonant two-photon scatter-
ing process is presented by Cohen-Tannoudji et al. [35]
(Sect. EIV.7). The energies of the initial ~$1 and final
~$2 states are related to the angular frequencies of the ab-
sorbed ω2 and emitted ω1 photons by $1 +ω2 = $2 +ω1.
This process is non-resonant inasmuch as there is no
discrete state in the system reached during the scat-
tering process. Equivalence is obtained when “rotating”
and “counter-rotating” contributions are added, and when

summation over all J-values for the intermediate states is
included.

The demonstration is based on the equality between
the matrix elements of the one-photon dipole transition
operator either in the length or in the velocity form,
evaluated between exact eigenstates of a non-relativistic
Hamiltonian:

〈a|∇ · ε|b〉 = (Eb −Ea)〈a|r · ε|b〉, (14)

where Ea and Eb are the eigenvalues associated with the
eigenstates |a〉 and |b〉.

In the present approach where a model Hamiltonian in-
cluding the spin-orbit interaction is introduced, the equiv-
alence between the two gauges is only approximate. How-
ever comparison of the values for the one-photon dipole
matrix elements in the length or velocity forms (Sect. 2.2)
demonstrates that the spin-orbit term has only a weak
influence, generally less than 5%.

Furthermore to suppress summations over intermedi-
ate states, Cohen-Tannoudji et al. [35] utilize the closure
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Ω∇21√
I1I2

=
Ωr

21√
I1I2

− 1
ω1

∑
EX J

[〈2|Dr · ε2|EXJ〉〈EXJ |Dr · ε1|1〉 − 〈2|Dr · ε1|EXJ〉〈EXJ |Dr · ε2|1〉]

− 1
ω1ω2

∑
EX J

[〈2|D∇ · ε2|EXJ〉〈EXJ |Dr · ε1|1〉 − 〈2|Dr · ε1|EXJ〉〈EXJ |D∇ · ε2|1〉]

− ω1 + ω2

ω1ω2
〈2|Dr · ε2|0〉〈0|Dr · ε1|1〉 (18)

relation
∑
EX J |EXJ〉〈EXJ | = 1 which is not valid for

the calculations presented in the present work. Indeed,
the basis set introduced in the R-matrix calculation spans
a non-complete space, the subspace orthogonal to the Ba+

core orbitals, and the ground state 6s2 is excluded from
the “counter-rotating” contributions to the Raman cou-
pling and dynamical Stark shifts.

The non-applicability of the closure relation for the
basis set used in the R-matrix calculation can be shown
by studying the following identity:

〈i|z2|j〉 =
∑
EX J

〈i|z|EX J〉〈EX J |z|j〉, (15)

where the second member is evaluated by a summation
over all eigenstates of Hπ J

cc . In this example, the 6s2 state
is introduced in the summation. For diagonal quantities
|i〉 = |j〉 all terms in the summation have positive values
and this relation is satisfied to within 15% for |i〉 = |1〉 and
2% for |i〉 = |2〉. For |i〉 = |1〉 and |j〉 = |2〉 the terms have
different signs, which explains why the corresponding non-
diagonal quantity is more sensitive to the incompleteness
of the basis; indeed one obtains: 10.6 6= 7.2. This compari-
son points out the incompleteness of the subspace spanned
in the summation which is restricted to the subspace or-
thogonal to the Ba+ core, but does not give information
on the contribution of the 6s2 state.

For a given J-value, the perturbed wavefunctions Λ
in the length and velocity forms are both calculated in
the subspace orthogonal to the core orbitals. They are
solutions of the same second order differential equations
with different right-hand side (Eq. (9)) and are related by:

Λ∇p1
(J) =

− Λr
p1

(J) +
1
ω2

∑
EX

|EXJ〉〈EX J |Dr
2 · ε2|1〉. (16)

From this relation, the following “mixed-gauge” two-
photon matrix element can be calculated:

Ω
r−∇
i1 (J) = 〈i|Dr

i · εi|Λ∇p1
(J)〉

= −Ωr

i1(J) +
1
ω2

∑
EX

〈i|Dr
i · εi|EX J 〉

× 〈EX J |Dr
2 · ε2|1〉. (17)

In (17), all functions |Λ∇p1
(J)〉 and |EXJ〉, which are eigen-

states of Hπ J
cc , are calculated in the subspace orthogonal

to the core orbitals. Therefore this equation provides a
test of the convergence of the R-matrix calculations for
a given J-value but cannot be used to assess the effect
of the exclusion of the core orbitals from the basis set.
This relation is numerically satisfied with an error smaller
than 5% for each J-value separately, which proves that
our basis set is sufficiently large to correctly describe the
subspace orthogonal to the Ba+ core.

Equation (14) is used to express the matrix elements
〈|D∇ ·ε|〉 occurring in equations (6, 7) in terms of 〈|Dr ·ε|〉.
By adding the “rotating” and “counter-rotating” contri-
butions it is possible to show that the length and velocity
values of the two-photon Raman coupling are related by:

see equation (18) above.

The contributions of the second, third and fourth terms
will be denoted as (a), (b) and (c) respectively, in the
following discussion and in Table 3.

The contribution (a) is strictly vanishing for parallel
linear polarizations (ε1 = ε2) due to the equality of the
two products. For perpendicular linear polarizations, al-
though the two products introduce different summations,
over J = 1e, 2e and over J = 0e, 2e respectively, an al-
most exact cancelation is obtained (see Tab. 3). Note that
in a model where the space spanned by |EXJ〉 would be
complete, this contribution would be proportional to the
matrix element 〈2|[(r · ε2), (r · ε1)]|1〉 of the commutator
[r, r], i.e. would be strictly equal to zero.

For summations extending over a complete space, the
contribution (b) would be proportional to the matrix ele-
ment of the commutator [r,∇]:

〈2|[(∇ · ε2), (r · ε1)]|1〉 = N〈2|(ε2 · ε1)|1〉
= δ21 = 0, (19)

where N = 2 is the number of active electrons in the
frozen-core model. However this equality is not valid in the
present calculation. With parallel polarizations, the ex-
plicit calculation of the summation involved in the bracket
occurring in term (b), is equal to ∼ −0.011, leading to the
value −0.3 reported in column (b) of Table 3.

The large contribution (c) arises because the “counter-
rotating” contribution does not include the ground
state |0〉.

For the diagonal quantities, a similar relation can
be written to compare the length Ωr

ii and the veloc-
ity

∼
Ω∇ii forms (Eq. (12)) of the dynamical Stark shifts.
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The contribution associated with line (a) is strictly van-
ishing because ε1 = ε2. The contribution of line (b), which
would be equal to the matrix element of the commutator
−(1/ω2)[(∇ · ε), (r · ε)] if the summation would include
a complete space, i.e. would be equal to −(N/ω2) for di-
agonal matrix elements, is expected to be large in the
frozen-core model. Indeed this contribution has to cancel
the term proportional to A2 occurring in the velocity for-
mulation (Eq. (12)). In fact the contribution correspond-
ing to line (b) differs by less than 20% from the value
−(N/ω2) reported in the fourth column of this table.

Some numerical values for the real parts of
∼
Ω∇ij andΩr

ij ,
and for the various contributions to these quantities are
given in Table 3, for diagonal and non-diagonal elements.
Diagonal quantities with i = j are related only to the
shifts due to the laser light ωk with k 6= i.

Equation (18) is numerically verified well, as evident
by comparing the total contribution <(Ωr

ij)/
√
IiIj +(a)+

(b) + (c) of the right hand side of this equation to the left
hand side <(Ω∇ij )/

√
IiIj .

For the dynamical Stark shifts, the large contributions
(b), due to the incompleteness of the subspace spanned
using the frozen-core model almost cancel the contribution
due to the term NA2/ω2

k in equation (12).
On the opposite, for the real part of the two-photon

Raman couplingsΩ21, the contributions (a)+(b) are small,
but the exclusion of the ground state from the “counter-
rotating” term (column (c)) is responsible for the differ-
ence ∆6s

21 = ±16
√
I1 I2. The resonant contribution of the

|0〉 state to the coupling between the |1〉 and |2〉 states
is not accounted for in a perturbative way but is dynami-
cally described in the time-dependent evolution of the sys-
tem. In the rotating wave approximation, this evolution
is mainly governed by the one photon Rabi frequencies
Ω1 = 〈1|D · ε1|0〉

√
I1 and Ω2 = 〈2|D · ε2|0〉

√
I2 coupling

the states |0〉, |1〉 and |2〉 [16].
Let us emphasize that the difference in the length

or velocity values for the Raman-coupling parameters is
closely related to the particular excitation scheme em-
ployed by Wang et al. [14,15] to investigate the possibil-
ity of controlling the branching ratios of photoionization
products. The two two-color interfering ionization path-
ways, resonantly enhanced by an intermediate state, pro-
posed in this scheme require only two independent tunable
laser fields for populating and ionizing the intermediate
resonant states. This control technique is insensitive to the
relative phase of the lasers and therefore is very robust,
as opposed to schemes using three or four colors which
require coherent laser fields [36]. A drawback of this ex-
citation scheme is that the discrete states are necessarily
resonantly coupled in a V system, which leads to the dif-
ficulty encountered in the definition of “counter-rotating”
Raman coupling.

Lastly, it can be pointed out that the velocity formu-
lation gives more rapidly converged results when the size
of the reaction volume increases, because it gives higher
weight to the part of the wavefunction closer to the nu-
cleus. In the present example, convergence is obtained for

the Raman coupling at r0 = 40 a.u. with the velocity form
while a value r0 = 50 a.u. is required with the length form.

5 Conclusion

In this paper we have presented a general method to cal-
culate dynamical Stark shifts and two-photon Raman cou-
plings in heavy alkaline-earth atoms. These interactions,
which are linear in the intensity of the laser fields (or in
the geometrical mean of the two intensities involved in
a two-color process) could play a significant role in MPI
processes in moderate fields. The approach, based on the
jj-coupled R-matrix method combined with MQDT the-
ory, is suitable to account for channel coupling due to
electrostatic and spin-orbit interactions and to calculate
threshold-resolved one-photon ionization rates even for
spin-orbit split thresholds. The application of the method
to the study of the dynamics in the coherent control ex-
periment [14,15] will be presented in a forthcoming pa-
per [27].

We have numerically verified that, as formally ex-
pected, the imaginary parts of the light shifts and of the
Raman couplings, which are respectively equal to the to-
tal ionization rates towards “resonant” continua and to
the two-photon couplings via “resonant” continua, can be
obtained in two different ways: (i) explicit calculation of
second-order term using the Dalgarno and Lewis method.
(ii) determination of the corresponding threshold-resolved
quantities, in terms of one-photon dipole matrix elements,
followed by a summation over all ionization thresholds.
These results emphasize the numerical consistency of the
R-matrix approach developed for one- and two-photon
processes. This consistency is tightly linked to the fact
that the R-matrix introduced in the eigenchannel ap-
proach [24] can be expressed in the Wigner-Eisenbud form
involving a sum of poles [37]. The same poles appear in
the calculation of the “incoming-wave” solutions |ψ−i 〉 de-
scribing the continuum states of the atom involved in one-
photon ionization processes and in the explicit or implicit
determination of the Green functions employed to deter-
mine two-photon atomic parameters.

Comparison between results obtained using the length
or the velocity forms of the electric dipole transition ope-
rator, points out the relatively weak influence of using
non-complete basis sets in the R-matrix treatment. For
atomic states resonantly coupled through the laser lights
in a Λ or V system, there is necessarily a difference in the
length and velocity form for parameters of second order in
the laser field strength. This problem is related to the fact
that resonant or non-resonant intermediate states involved
in these second order parameters are not treated in the
same way.

Such limitations do not appear in the experimental
study of two-photon resonant three-photon ionization of
barium [11], where the Raman coupling between nearly-
degenerate Rydberg states (6snd J = 2) was found to play
a key role. In this process, the Rabi frequencies between
the ground state and the J = 2 Rydberg states appear
to the second-order of perturbation theory and are thus
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of the same order of magnitude as the Raman coupling.
Moreover no resonant term appears in the calculation of
Raman coupling.

The extension of the R-matrix/MQDT method to
the determination of Raman couplings between Rydberg
states could allow Rydberg wave packet dynamics in two-
electron atoms to be studied. Two-photon Raman-like pro-
cesses are involved in experiments performed with time-
delayed pump and probe pulses [38], which have attracted
particular interest in recent years.

Numerical calculations were carried out on the Cray 98 be-
longing to the “Institut de Développement des Ressources en
Informatique Scientifique” of the French “Centre National de
la Recherche Scientifique”. The laboratoire Aimé Cotton is as-
sociated with the Université Paris-Sud.
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